

Spectra Analysis 中文操作手册

1

序

緣說.....

長久以來, Jasco (日本分光) 在光譜分析技術上不斷精進, 且在 市場上佔有相當之比例, 目前 Jasco 在傅立葉轉換式紅外線光譜儀 所推出的是 FT/IR 400plus 及 600plus 系列, 在紫外/可見光分光光 譜儀則推出 V-500系列, 而在螢光光譜儀是 FP-700系列; 另外在光 譜分析方面, Jasco 於 1997 年發表最新一代光譜控制分析視窗軟 體 Spectra Manager, 其特點有下:

 整合性軟體, Jasco 之光譜儀如 FT/IR, UV/VIS 及 FP 皆是 透過 Spectra Manager 控制及分析,因此不但可用電腦同 時控制不同之光譜儀,在圖譜分析上亦只要學習一次即可.
 應用軟體眾多,每一種光譜儀除 Spectra Manage 外亦有多

種應用程式供使用者選用 (如 Validation, Lab Search...等)

本書是 Spectra Manager 之中文操作手册, 在製作過程中除要 求文句簡潔易懂外並輔以大量之圖形及範例, 期以 Step by Step 方 式將各種分析功能介紹給使用者, 如果使用者在使用上有任何問題, 亦歡迎來電.

尚偉分析儀器部門

目錄

PART

I	Spectra Analysis (光譜分析)	
	A. 檔案處理 (FILE)	
	開啟檔案 (Open) 10	
	疊圖 (Overlay) 11	
	B. 檔案編輯 (EDIT)	
	圖譜複製至剪貼簿 (Copy Picture) 15	
	圖譜複製成點矩陣檔 (Copy Bitmap) 17	
	C. 圖譜檢視 (VIEW)	
	坐標軸規格 (Scale) 21	
	圖譜線條編輯 (Pattern) 22	
	格線 (Grid) 25	
	D. 波峰處理 (PROCESS)	
	1.圖譜修正(Correction)	
	基準線校定 (Baseline) 28	
	圖譜平滑設定 (Smoothing) 30	
	雜訊消除設定 (Noise Elimination) 36	
	波峰解析設定 (Deconvolution) 40	
	傅立葉轉換之雜訊參數 (FT Filter) 44	
	2. 圖譜運算 (Operation)	
	波峰數學運算 (Arithmetic) 51	
	圖譜微分設定 (Derivatives)	
	3. 波峰分析 (Peak Process)	
	波峰搜尋 (Peak Find) 63	
	波峰高度 (Peak Height) 69	
	波峰面積 (Peak Area) 73	
	半波峰寬度 (Peak Width)	

圖譜相減	(Subtraction)	81
	圖譜相減	圖譜相減 (Subtraction)

D. WINDOW(視窗排列)

重疊排列	(Cascade)	
並列排列	(Title)	
關閉所有圖言	善(Close All)	

E. OTHER(其它設定)

工具列顯示	(Tool Bar)	
喜好設定	(Customize)	

F. HELP (說明)

版本及版權宣告 (About)101

Spectra Manager

圖示: Spectra Manager 主畫面

其中左邊視窗為圖譜分析,而右邊視窗為光譜測量,每作一次光 譜測量,電腦會將測量結果直接匯集到圖譜分析中去作分析,另外使用 者亦可由圖譜分析直接開啟圖檔作圖譜分析

量测流程:

PART I

Spectra Analysis

光譜分析

如上圖所示, 光譜分析 (Spectra Manager)主要可分為兩大部份,

一為檔案管理部份,另一為圖譜處理部份

其中

【File】 Edit】 View】……為檔案管理

【Process】.....為圖譜處理

FILE

檔案處理

File 主要目的是檔案處理,其項目包括

開啟檔案 (Open) 疊圖 (overlay) 關檔 (Close) 儲存檔案 (save) 另存新檔 (save as) 如下圖, File(檔案處理)可分為下列幾個部份: Open (開啟檔案),

overlay (疊圖), Close(關檔), save(儲存檔案), save as(另存新檔)

Open (開啟檔案)

由【File】→→【Open】進入開啟檔案畫面,如下圖所示

Open New File			? ×
查詢(<u>I</u>): 🔁	samples	• 🗈	
 al.jws baseline.jws ch2br2.jws fftfilt.jws green.jws holmium.jws) aldh.jws apolystyr.jws apvc.jws apvcmbs.jws apqnt1.jws aqnt2.jws	a qnt3.jws a qnt4.jws a qnt5.jws a rf-kk.jws	
檔案名稱(<u>N</u>): 檔案類型(<u>T</u>):	JASCO Std. (*.JWS)		開啓舊檔(<u>O</u>) 取消

Spectra Manager 可開啟的光譜程式主要有兩種 (I)*.jws (Jasco

Spectrum 格式), (ii) *.dx (Jcamp 格式)

Overlay (叠圖)

疊圖模式主要是幫助使用比較不同圖譜之差異情況

使用方式如下

Step1: 開啟一圖檔,如下圖所示

Step2: 由【File】 → 【overlay】進入疊圖畫面, 如下圖所示

EDIT

檔案編輯

Edit 主要的目的是將開啟的圖譜複製到剪貼簿

其項目包括

圖譜複製成 GIF 檔 (Copy Picture)

圖譜複製成 BMP 檔 (Copy Bitmap)

如下圖所示, Edit (檔案編輯)主要的目的是將開啟的圖譜複製到 剪貼簿中, 方便使用者在各種文書處理系統中 (如 MS Word)製成圖 文並茂的文件

Copy Picture (圖譜複製成 GIF 檔)

操作範例:

將已開啟之圖譜複製到文書處理系統 (Word 97)

Step 1: 由【Edit】→→【Copy Picture】, 如下圖所示

Step 2: 開啟 Word97 並開啟一新文件檔, 如下圖所示

Step3: 由 [编輯] → [貼上]將光譜圖貼到文件中, 如下圖所示

Copy Bitmap(圖譜複製成 BMP 檔)

操作範例:

將已開啟之圖譜複製到文書處理系統 (Word 97)

Step 1: 由【Edit】→ 【Copy Bitmap】, 如下圖所示

Step 2: 開啟 Word97 並開啟一新文件檔, 如下圖所示

Step3: 由 [编輯] → [貼上]將光譜圖貼到文件中, 如下圖所示

VIEW

圖譜檢視

View 主要功能是編輯圖譜之檢視模式,如圖形坐標 軸規格大小,圖譜顏色,格線....

其項目包括

坐標軸規格(Scale)

形式编輯(Pattern)

格線(Grid)

如下圖所示, View 主要功能是編輯圖譜之觀看模式, 如圖形坐標 軸規格大小, 圖譜顏色, 格線.....

圖示:修改後X軸坐標 1000~3000 cm⁻¹, Y 軸坐標 0~50

Pattern (形式編輯)

由【View】→→【Pattern】可修改圖譜線條粗細,顏色樣式..等,如 下圖所示:

其中

Element:所開啟之光譜圖 (一般光譜圖為 spectrum 1, 若有疊

圖則依序為 spectrum2, spectrum3....)

Line style:光譜圖線條形式 (如實線,虛線....)

Line width:光譜圖線條粗細

Sample:光譜圖線條預視圖

As default:將所編輯之光譜圖線條規格設為預設值

將圖譜的線條透過 Pattern (形式編輯)由實線改成虛線

Step 1: 由【Edit】 → 【Pattern】, 如下圖所示

Step 2: 於 Line Style 點選虛線, 此時於 Sample 中可看到預視線條

如下圖所示

Pattern Settings	×
Element Spectrum 1	ОК
<u>C</u> olor:	Cancel
	As Default
Line Style:	Sample
Line Width:	

Step 3: 當線條選擇沒有問題, 按 OK 鍵可得完成圖譜, 如下所示:

Grid (格線)

由【View】→→【Grid】可於圖譜中加入格線線條粗細,如下圖所示

圖示: 原圖選擇 Grid (格線) 功能

圖示: 格線完成圖

PROCESSING

波峰處理

Processing 主要目的是分析圖譜,其項目包括

圖譜校正(Correction)

圖譜運算(Operation)

波峰分析(Peak Process)

圖譜相減(Subtraction)

單位轉換 (Y Unit Conversion)

圖譜校正(Correction)

Baseline (基準線設定) Smoothing (圖譜平滑設定) Noise Elimination (雜訊消除設定) Deconvolution (波峰解析設定) FT Filter (傳立葉轉換之雜訊參數)

Baseline (基準線設定)

Baseline 的目的主要設定光譜圖之基準線,如下圖(A)所示,因 為圖譜之基準線很明顯地不在同一水平線上,會造成判讀上的困難, 因此我們可以利用 Baseline 將圖譜之基準線拉到同一水平線上,如 下圖 (B)所示.

圖(B):經 Baseline 修正後,基準線在同一水平線上,判讀容易

Baseline 操作範例

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Correction] → [Baseline] 進入基

準線設定畫面,如下圖所示:

其中

1.上視窗為原始圖譜,下視窗為修改後圖譜之預視畫面

2. 圖上左上方為 Baseline 校正模式

line: 線性校正 (校正點間以直線連接)

spline: 抛物線校正 (校正點間以拋物線連接)

Step3: 當選定校正模式之後, 使用者可利用滑鼠去拉上視窗之基準

線,直到下視窗之預視圖符合我們所需為止,如下圖所示

Step4: 若一切沒問題, 選擇 [OK]鍵即可得到完圖如下圖所示

Smoothing (圖譜平滑設定)

Smoothing 的主要目的是將圖譜平滑化,如下圖(A)所示,若使 用者認為圖譜雜訊會造成判讀上的困難,我們可以利用 Smoothing 將 圖譜平滑化以方便判讀,如下圖 (B)所示.

圖(B):經 Smoothing 修正後,在1500cm⁻¹~1800 cm⁻¹之雜訊已被平滑化,不復存在

Smoothing 操作範例

Step1: 由 [File] → [Open] 開啟圖譜, 如下圖所示

Step2:由 [Processing] → [Correction] → [Smoothing] 進

入圖譜平滑設定畫面,如下圖所示

其中

1.上視窗為原始圖譜,下視窗為修改後圖譜之預視畫面

2. 圖上左上方為 method 為圖譜平滑模式

3. convolution width 為圖譜平滑程度 (5~25)數值愈大表平滑 程度愈大,但相對圖譜愈失真

Step3: 當選定圖譜平滑模式校正模式及平滑程度之後, 選擇

[Apply] 鍵觀察下視窗之預視圖,直到預視圖符合我們所需為

止,如下圖所示

Step4: 若一切沒問題, 選擇 [OK]鍵即可得到完圖如下圖所示

Noise Elimination (雜訊消除設定)

Noise Elimination 的目的主要消除光譜圖特定區域內之雜訊

(若選定之區域內有波峰存在亦會被消除),如下圖所示.

圖(B):經 Noise Elimination 修正後, 雜訊已被消除

| 新聞結 | W Microsoft Word - process...| 🖓 Spectra Manager

Brectra Analysis - [... 🤇 En PM 11:44
Noise Elimination 操作範例

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

Step2: 由 [Processing] → [Correction] → [Elimination] 進

入雜訊消除設定畫面,如下圖所示

其中

- 上視窗為原始圖譜,其圖上兩垂直線間即為雜訊消除區間;下 視窗為修改後圖譜之預視畫面
- 2.圖上左上方之波數為垂直線之位置
- Step3:使用者可利用滑鼠去拉上視窗之垂直線,或直接填入垂直線 之位置,並按 [Execute]鍵,直到下視窗之預視圖符合我們所

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

Deconvolution (波峰解析設定)

Deconvolution 的目的主要作波峰解析消除,如下圖所示,因為 波峰有加成性,因此有些波峰往往是由2個或2個以上的波峰所造成, 我們可以利用 Deconvolution 將這些波峰加以釐清

圖(A):原始圖譜,我們認為是由3支波峰所造成

圖(B):經 Deconvolution 修正後,3支波峰已被釐清

Deconvolution 操作範例

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Correction] → [Devonvolution] 進

入雜訊解析設定畫面,如下圖所示

其中

1.上視窗為原始圖譜,其圖上兩垂直線間即為雜訊消除區間;下

視窗為修改後圖譜之預視畫面

2. 圖上左上方 FWHM (Full width of half maximum)為最大半波

峰寬度

Step3:使用者直接填入FWHM之值,並按 [Apply] 鍵,直到下視窗

之預視圖符合我們所需為止,如下圖所示

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

FFT Filter (傅立葉轉換之雜訊參數)

FFT Filter 的目的主要將圖譜再計算,並配合雜訊參數將不符雜 訊參數之雜訊于以消除

1. 假設一波峰如下圖所示, 由圖中發現雜訊寬度約為 10~12cm⁻¹

2. 此時我們利用 FFT Filter 並設定雜訊參數為 15cm⁻¹此時小於

15cm⁻¹之雜訊將被消除,如下圖所示

FFT Filter 操作範例

Step1:由 [File]→ [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Correction] → [FFT Filter] 進入

傅立葉轉換之雜訊參數設定畫面,如下圖所示

其中

1.上視窗為原始圖譜,其圖直線上點為X軸點之緊密程度(X)

及Y軸點之壓縮程度 (Y), 下點為雜訊消除參數

(Period); 下視窗為修改後圖譜之預視畫面

2. 圖上左上方參數

X:圖形X軸點之緊密程度Y:圖形Y軸點之壓縮程度Period:雜訊消除參數

Step3 :

- 由上圖我們欲消除 1400cm⁻¹~1800 cm⁻¹ 間之雜訊,並由 圖中我們發現雜訊之寬度約在 15 cm⁻¹
- 此時我們可以利用滑鼠移動下點將 Period 定在 15 cm⁻¹ (由下圖(A), 我們發現 Period 之極限值為 9.64525, 無法 達到 15 cm⁻¹之要求,此時我們可以水平移動上點減小 X 值,在水平移動下點以增加 Period,值,直到 Period 達到 15 cm⁻¹,如(B)上圖),並按 [Apply]得預示圖譜,如(B)下圖 所示

圖(A): x 為 1638.4 時, Period 極限值為 9.64525

圖(B):上圖 x 為 1035.64 時, Period 極限值為 15.2589

下圖為預視圖譜

Step4:Y 為圖形之壓縮程度, Y=0.9 表所得圖譜之穿透率將為原來的

90%, 如下圖所示

Y為 0.5 時,所得圖譜起點穿透率為 42.5%

Step5: 若一切沒問題, 選擇 [OK]鍵即可得到完圖如下圖所示

圖譜校正(Correction)

Arithmetic (波峰數學運算)

Derivatives (圖譜微分設定)

Arithmetic (波峰數學運算)

Arithmetic 的目的主要作波峰Y軸之數學運算,使用者可以對單 一光譜圖波峰作數學運算,亦可對兩光譜圖波峰作數學運算.下圖(A) 為一光譜圖,下圖(B)則為圖(A)乘以2之結果.

圖(B):圖(A)乘以2,起始點穿透率為170%

Arithmetic 操作範例

I 單一波峰運算

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Operation] → [Arithmetic] 進入

波峰數學運算設定畫面,如下圖所示

Step3: 若波峰欲從 90%增至 250%則計算式如下

 $3.0000 \times S_1 + 70.0000 = Memory#2$

 $(2.0000 \times 85\% + 80.0000 = 250\%)$

按 [Apply]鍵得預視圖譜, 如下圖所示

其中

Step4: 若一切沒問題, 選擇 [OK]鍵即可得到完圖如下圖所示

II 兩波峰間運算

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

Step2:由 [File] ──►[Overlay] 開啟另一圖譜,與上一圖譜重疊

Step3:由 [Processing] → [Operation] → [Arithmetic] 進入

波峰數學運算設定畫面,如下圖所示

Step3: 假設吾人欲以2倍 S_1 加上 S_2 則公式計算如下

 $(2.0000 \times S_1 + 0.0000) + (1.0000 \times S_2 + 0.0000) = memory #2$

 $(2.0000 \times 85\% + 0.0000) + (1.0000 \times 85\% + 0.0000) = 255\%$

按 [Apply]键, 結果如下圖所示

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

Derivatives (圖譜微分設定)

Derivatives 的目的主要是將光譜圖作1~3次微分,形成1~3次微分。分圖譜,如下圖所示.

圖(A):原始圖譜

圖(B):一次微分圖譜

Derivatives 操作範例

Step1:由 [File]→ [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Correction] → [Derivatives] 進入

圖譜微分設定設定畫面, 如下圖所示

其中

1.上視窗為原始圖譜,下視窗為修改後圖譜之預視畫面

2.圖上左上方 Order 為圖譜微分次數

Interval 為微分區間 (dy/dx 之 dx)

Step3: 當選定圖譜微分次數及微分區間之後, 按 [Apply]鍵得預視

圖譜,如下圖所示

Step4: 若一切沒問題, 選擇 [OK]鍵即可得到完圖如下圖所示

波峰處理(Peak Process)

Peak Find (波峰搜尋)

Peak Height (波峰高度)

Peak Area (波峰面積)

Peak Width (半波峰寬度)

Peak Find (波峰搜尋)

Peak Find 的目的主要是設定所要搜尋之特定波峰,如下圖所示

圖(B):經 Peak Find 所定義出特定之波峰

Peak Find 操作範例

Step1: 由 [File]— →[Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Peak Process] → [Peak Find] 進入

波峰搜尋基設定畫面,如下圖所示

其中

Peak 為波峰搜尋模式

1. Top: 以波峰為搜尋對像

2. Buttom:以波谷為搜尋對像

3. Both:以波峰及波谷為搜尋對像

Noise Level:雜訊參數,當波之高度超過雜訊參數之設限值為波

峰,否則為雜訊

Step3: 當決定雜訊參數之後,按 [execute]進入波峰決定畫面, 如下

圖所示

其中

Add: 增加波峰

Delete: 刪減波峰

Print:列印結果

Add 及 Delete 之用意在使使用者以手動方式決定波峰,當使用

者透過雜訊參數 (Noise level)仍無法得到欲得到之波峰,則可利

用 Add 或 Delete 以手動方式決定波峰

(A) Add (增加波峰)

如下圖所示,以滑鼠移動圖譜之直線到所欲增加波峰之位置後按 [Add]即可增加波峰

將垂直線移至 1780cm-1 處,按[Add]鑑

(B) Delete(刪減波峰)

如下圖所示,以滑鼠指到所欲刪減波峰之位置後按 [Delete]即可 刪減波峰

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

Step5:由 [View] → [Peak] → [Bar X,Y]即可看到所搜尋出

之波峰,如下圖所示

Peak Height (波峰高度)

Peak Find 的目的主要是計算特定波峰之高度,亦可比較不同波峰高度之比值,如下圖所示

圖示: 2899cm⁻¹處波峰高度為 0.4097, 1722cm-1處波峰高度為 0.0351

Peak Height 操作範例

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Peak Process] → [Peak Height] 進入

波峰高度畫面,如下圖所示

P1, P2 分為兩支使用者指定之特定波峰

Base1, base2 則為決定 P1, P2 高度之基準點

波峰高度計算如下

P1, P2, base1, base2 位置均由使用者決定

Step3:由[setting]進入波峰高度設定模式,如下圖所示

- 使用者可於 baseline 選項中選擇單基準點 (1 point base)或 雙基準點 (2 point base)計算波峰高度
- 2. 另外在計算上可採手動 (manual)或自動 (Auto)計算

手動 (manual) : P1, P2, base1, base2 位置均由使用者決定

自動 (Auto) : P1, P2, 由使用者決定, base1 及 base2 則由電腦

判斷

3. 決定波峰高度設定模式之後,按 [OK]回到波峰高度畫面, 如下圖

所示

➡→由上圖波峰高度畫面我們得知 P1 高度為 0.4097, P2 高度

為 0.0351; 且高度比 P1/P2=11.6830, P2/P1=0.0956
Peak Area (波峰面積)

Peak Find 的目的主要是計算特定波峰之面積,亦可比較不同波峰面積之比值,如下圖所示

波峰面積為 28.3348

Peak Area 操作範例

Step2:由 [Processing] → [Peak Process] → [Peak Area] 進入

_ 8 ×

_ 8 ×

波峰面積畫面,如下圖所示

P1, P2 分為兩支使用者指定之特定波峰範圍

Range (base) 則為決定 P1, P2 面積之基準點

波峰面積計算如下

其中

P1, P2, Range (base) 位置可由使用者決定

Step3:由[setting]進入波峰面積設定模式,如下圖所示

🚜 Spe 💷 Fi	ectra Analysis - [View (pv le <u>E</u> dit <u>V</u> iew <u>P</u> roces	rc.jws)] sing <u>W</u> indow <u>O</u> the	r <u>H</u> elp			_ 8 ×
-	— pvc.jws	· X Y *	+ ++ +	🔶 t 🐼 🔀 🕄		
1	🙀 Peak Area				×	
Abs	Area P1 -455.0782 P2 -455.0782 Ratio P1/P2 1.0000 P2/P1 1.0000 <u>Print</u> <u>Scale</u> OK Cancel	Range(Are P Peak Area - S Data: P1: P2: Baseline © 2 Poir C No Ba C Arbitra	a) Range(Ba [1479.58 et 2 Point Base - 2 Point Base - t Base ise iny Base A	Seline) 2313.62 OK Calculation Calculati	Cancel Region e Ragion agion	h
	0	3000	1.3	2000		400
	4000	5000	Wavenumb	er[cm-1]	1000	400
● 開開	🗯 🛛 🕎 Microsoft Word	d	ager 🛛 🌆 Spectra	Anal 愛 未命名 - 小	-畫家 ┃ - • • • • • • • • • • • • • • • • • •	PM 11:43

其中

- 另外在計算上亦有3種
 - a. Ignore Under baseline Region (基準線下面積忽略不計)
 - b. Subtract Under baseline Region (基準線下面積於以扣除)
 - c. Add Under baseline Region (基準線下面積於以合併計算)

Under baseline Region

決定波峰面積設定模式之後,按 [OK]回到波峰面積畫面, 如下圖

所示

▶ 由上圖波峰面積畫面我們得知 P1 面積為 54.0080

P2 面積為 28.3561; 面積比 P1/P2=1.9046 P2/P1=0.5250

Peak Width (半波峰寬度)

Peak Width 的目的主要是計算特定波峰半波峰寬度 (FWHM),

如下圖所示

Peak Width 操作範例

Step1:由 [File]→ [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Peak Process] → [Peak Width]進入

半波峰寬度設定畫面, 如下圖所示

Xaxis(R),及Xaxis(L)為決定特定波峰半波峰寬度之基準線,使 用者可利用滑鼠去拉上視窗之基準線

➡▶ 由上圖半波峰寬度畫面我們得知, FWHM 為 42.2476

波峰相減(Subtraction)

波峰相減(Subtraction)基本上是 Arithmetic (波峰數學運算)其 中一項功能,因使用率極高,尤其是比較兩圖譜間之差異性, 因此在此專章說明.

Subtraction 主要是將兩圖譜相減,以比較其間之差異性

圖 B

Subtraction 操作範例

Step1:由 [File]→ [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Subtraction]進入波峰相減畫面,如下

圖所示

選擇欲相減之圖譜

其中

- 1. 上視窗為原始圖譜, 下視窗為修改後圖譜之預視畫面
- 2. 圖左上方 [Factor]表原始圖譜(即 圖 A)之放大倍數; [Step]表 原始圖譜(即 圖 A)放大時每次增加之倍數[Exchange]表 圖 A 與圖 B 對調 (原來是 A-B 後來 B-A)

Step3:選擇完 [factor]後, 按[OK]鍵相減後圖譜,如下圖所示

YAxis Conversion (圖譜Y軸單位轉換)

Spectra Manager 為一整合性軟體,因此不論是 UV/VIS(紫外光) 圖譜, FT/IR(紅外光)圖譜或是 FP(螢光) 圖譜皆可作 Y 軸單位轉換 (%T, ABS, %R, KM....等)

圖(A):原始圖譜,Y軸單位為 %T

圖(B):經單位轉換,Y軸單位變為 Abs

Y 軸單位轉換操作範例 (%T ──→ Abs)

Step1:由 [File]→ [Open] 開啟圖譜,如下圖所示

Step2:由 [Processing] → [Y unit conversion]] 進入單位轉換畫

面,如下圖所示

Step3:選擇完所欲轉換之單位(Abs) 後按[OK]鍵即可

經單位轉換,Y 軸單位變為 Abs

WINDOW

視窗排列

Window 主要目的是排列已開啟之圖譜視窗,

其項目包括

重疊排列 (Cascade) 並列排列 (Title) 關閉所有圖譜(Close All)

89

Window (視窗)主要是對已開啟之圖譜視窗作適當之安排,當使用 者同時開啟數個圖譜,可利用 Window (視窗)作適當之排列,如下圖 所示, Window (視窗)的功能主要有 Cascade(重覆排列), Title(並列排 列),以及 Close All(關閉所有圖譜)

Cascade(重覆排列)

Cascade(重覆排列)主要是對已開啟之數個圖譜視窗作 3D 排列, 如下圖所示.

Cascade(重覆排列)顯示

Title(並排顯示) 主要是對已開啟之數個圖譜視窗作堆疊排列, 如下圖所示.

Title(並排顯示)顯示

Close All (關閉所有圖譜)

Close All (關閉所有圖譜)主要是關閉所有已開啟之圖譜視窗,如下圖所示.

OTHER

其它設定

Other 主要目的是雜項參數設定,

其項目包括

工具列顯示 (Tool Bar)

喜好設定 (Customize)

Tool Bar (工具列顯示)

所謂工具列就是軟體本身將較常用之功能選項以圖形顯示讓使 用者直接點選,而不用再透過選單點選. Spectra Analysis 就如同 Word, Excel...等 Windows 軟體一般,亦提供常用之工具列方便使用者 使用.如下圖所示

工具列

除了工具列顯示外, Spectra Analysis 亦提供工具列编輯功能,

使用者可依需要自由編排.

工具列编辑

操作範例:

Step 1: 由【Other】→【Tool Bar】→ 【Edit】, 如下圖所示

無工具列

工具列編輯視窗,其中左視窗為 Spectra Analysis 所提供之所有工具列,而右視窗則為所點選之工具列

Step 2: 於左視窗點選所欲使用之工具列,如下圖所示.

	Desistand Test Dutters	
ool Buttons:	Registered Tool Buttons:	
🝌 Baseline	🔺 🛛 📈 Baseline	<u>S</u> elect
💑 Smoothing	Smoothing	<u>R</u> emove
بر Peak Find -		
🕂 Peak Height		OK
🔔 Peak Area	-	Cancel

選擇基準線校正及圖譜平滑處理兩個工具列

Step 3: 按【OK】後,在 Spectra Analysis 則出現基準線校正及圖譜

平滑處理兩個工具列, 如下圖所示

出現基準線校正及圖譜平滑處理兩個工具列

喜好設定 (Customize)

所謂喜好設定 (Customize), 就是使用者設定開啟圖譜, 或列印 圖譜時一些偏好設定, 如下圖所示

View	ОК
Apply scale setting to all view.	Cance
🔽 Auto Scale in Open, Overlay	
Print Use Standard <u>F</u> orm	
🔽 Ask the <u>T</u> itle before printing.	
🔟 Don't display "Print" Dialog.	
Legend	
C Allways C Only Plural Data 🗿	Never

其中, 在開啟圖譜時檢視 (View)部份

1. Apply view setting to all - 將目前檢示之模式適用於以

後所啟之所有圖譜

2. Apply scale setting to all view - 將目前座標之格式適用於以

後所開啟之所有圖譜

3. Auto scale in Open, Overlay to all view - 當開啟圖譜或疊圖,

電腦自動將座標軸最

佳化

在列印圖譜 (Print)部份

- 1. Use standard form 使用標準格式列印 (附圖一)
- 2. Ask title before printing 列印前輸入列印抬頭,如下圖

1

Print <u>T</u> itle	OK
列印前輸入列印抬頭	Cancel
Legend	
C Allways 🔿 Only Plural Data	<u>S</u> etup
Never	

3. Don't display "Print" dialog - 列印時不顯示列印對話視窗

HELP

說明

Help 主要是軟體版本及版權說明,

其項目包括

版本及版權宣告 (About)

版本與版權宣告(About)

Help 是 Jasco Spectra Manager 版本說明與版權宣告, 如下圖所 示, Spectra Manager for win95, 1.27.00 版, 版權隸屬於 Jasco...等

